Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Directed evolution of adenine base editors with increased activity and therapeutic application

Abstract

The foundational adenine base editors (for example, ABE7.10) enable programmable A•T to G•C point mutations but editing efficiencies can be low at challenging loci in primary human cells. Here we further evolve ABE7.10 using a library of adenosine deaminase variants to create ABE8s. At NGG protospacer adjacent motif (PAM) sites, ABE8s result in ~1.5× higher editing at protospacer positions A5–A7 and ~3.2× higher editing at positions A3–A4 and A8–A10 compared with ABE7.10. Non-NGG PAM variants have a ~4.2-fold overall higher on-target editing efficiency than ABE7.10. In human CD34+ cells, ABE8 can recreate a natural allele at the promoter of the γ-globin genes HBG1 and HBG2 with up to 60% efficiency, causing persistence of fetal hemoglobin. In primary human T cells, ABE8s achieve 98–99% target modification, which is maintained when multiplexed across three loci. Delivered as messenger RNA, ABE8s induce no significant levels of single guide RNA (sgRNA)-independent off-target adenine deamination in genomic DNA and very low levels of adenine deamination in cellular mRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Eighth generation adenine base editors mediate superior A•T to G•C conversion in human cells.
Fig. 2: Cas9 PAM-variant ABE8s and catalytically dead Cas9 ABE8 variants mediate higher A•T to G•C conversion than corresponding ABE7.10 variants in human cells.
Fig. 3: A•T to G•C conversion and phenotypic outcomes in primary human cells.
Fig. 4: Whole transcriptome and whole genome sequencing data from cells treated with base editor mRNAs.

Similar content being viewed by others

Data availability

Plasmids encoding the core ABE8s used in this work are available from Addgene. High-throughput sequencing data are deposited in the NCBI Sequence Read Archive (PRJNA574182). Source data are available online for Figs. 14 and Supplementary Figs. 3–26 and 28.

Code availability

All software tools used for data analysis are publicly available. Detailed information about versions and parameters used, as well as shell commands, are provided in Supplementary Note 4.

References

  1. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yasui, M. et al. Miscoding properties of 2′-deoxyinosine, a nitric oxide-derived DNA adduct, during translesion synthesis catalyzed by human DNA polymerases. J. Mol. Biol. 377, 1015–1023 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Zeng, Y et al. Correction of the marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 26, 2631–2637 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, Z. et al. Highly efficient RNA-guided base editing in rabbit. Nat. Commun. 9, 2717 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Song, C.-Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Ryu, S.-M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Hua, K., Tao, X., Yuan, F., Wang, D. & Zhu, J. K. Precise A•T to G•C base editing in the rice genome. Mol. Plant 11, 627–630 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, F. et al. Highly efficient A•T to G•C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol. Plant 11, 631–634 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hua, K., Tao, X. & Zhu, J.-K. Expanding the base editing scope in rice by using Cas9 variants.Plant Biotechnol. J. 17, 499–504 (2019).

    Article  PubMed  Google Scholar 

  13. Yang, L. et al. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell 9, 814–819 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rees, H. A., Yeh, W. H. & Liu, D. R. Development of hRad51–Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat. Commun. 10, 2212 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hua, K et al. Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnol. J. 18, 770–778 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Nishimasu, H et al. Engineered CRISPR–Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, H. S., Jeong, Y. K., Hur, J. K., Kim, J. S. & Bae, S. Adenine base editors catalyze cytosine conversions in human cells. Nat. Biotechnol. 37, 1145–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Forget, B. G. Molecular basis of hereditary persistence of fetal hemoglobin. Ann. N. Y. Acad. Sci. 850, 38–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Wienert, B. et al. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood 130, 803–807 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Canver, M. C. & Orkin, S. H. Customizing the genome as therapy for the β-hemoglobinopathies. Blood 127, 2536–2545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fitzhugh, C. D. et al. At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT. Blood 130, 1946–1948 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Depil, S. et al. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Stadtmauer, E. A. et al. First-in-human assessment of feasibility and safety of multiplexed genetic engineering of autologous T cells expressing NY-ESO -1 TCR and CRISPR/Cas9 gene edited to eliminate endogenous TCR and PD-1 (NYCE T cells) in advanced multiple myeloma (MM) and sarcoma. ASH Publications, https://doi.org/10.1182/blood-2019-122374 (2019).

  28. Qasim, W et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  29. Ren, J. et al. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23, 2255–2266 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Webber, B. R et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poirot, L. et al. Multiplex genome-edited T-cell manufacturing platform for ‘off-the-shelf’ adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Serreze, D. V., Leiter, E. H., Christianson, G. J., Greiner, D. & Roopenian, D. C. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 43, 505–509 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. LeibundGut-Landmann, S. et al. Mini-review: specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol. 34, 1513–1525 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, H. K., Smith, H. E., Liu, C., Willi, M. & Hennighausen, L. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos. Commun. Biol. 3, 19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yeh, W.-H., Chiang, H., Rees, H. A., Edge, A. S. B. & Liu, D. R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 9, 2184 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Geu-Flores, F., Nour-Eldin, H. H., Nielsen, M. T. & Halkier, B. A. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 35, e55 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Cavnar for support with creating digital renderings of base editing mechanisms. We acknowledge D. Levasseur and B. Yan for technical advice and support with CD34+ experiments. We thank B. Gantzer, J. Decker and M. Humes for NGS support. We recognize and thank S. Haskett for his FACS expertise and sorting mammalian cells used in WGS experiments.

Author information

Authors and Affiliations

Authors

Contributions

N.M.G. conceived and directed the work, conducted evolution and Hek293T experiments, performed analyses, and wrote the manuscript. D.K.L. and N.M.S.-E. conducted mammalian cell transfections. H.A.R. conducted all off-target studies and analyses except for whole transcriptome sequencing and WGS analyses, which were conducted by L.E.Y. M.S.P. and J.Y. designed CD34+ experiments and synthesized mRNA constructs. C.R., J.Y., and A.J.L. carried out all CD34+ experiments and associated UHPLC procedures. A.E., R.M. and J.M.G. conducted all T-cell experiments and analyses. L.A.B. conducted all statistical analyses of NGS data and generated figures. D.A.B. created PyMol figures. S.-J.L. and I.M.S. designed truncation experiments. G.C. supervised the research. L.E.Y. processed, analyzed and generated figures for whole transcriptome sequencing and WGS. N.M.G., H.A.R., M.S.P., J.M.G., L.A.B. and G.C. all edited the manuscript.

Corresponding authors

Correspondence to Nicole M. Gaudelli or Giuseppe Ciaramella.

Ethics declarations

Competing interests

All authors were employees of Beam Therapeutics when the work was conducted and are shareholders in the company. Beam Therapeutics has filed patent applications on this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30, Supplementary Tables 1–27, Supplementary Notes 1–6, Supplementary Sequences 1–9 and Supplementary References

Reporting Summary

Source data

Source Data Fig. 1

Fig. 1c,d raw data

Source Data Fig. 2

Fig. 2 raw data

Source Data Fig. 3

Fig. 3 raw data

Source Data Fig. 4

Fig. 4 raw data

Source Data Supp. Figure 3

Supplementary Figure 3 raw data

Source Data Supp. Figure 4

Supplementary Figure 4 raw data

Source Data Supp. Fig. 5

Supplementary Figure 5 raw data

Source Data Supp. Fig. 6

Supplementary Figure 6 raw data

Source Data Supp. Fig. 7

Supplementary Figure 7 raw data

Source Data Supp. Fig. 8

Supplementary Figure 8 raw data

Source Data Supp. Fig. 9

Supplementary Figure 9 raw data

Source Data Supp. Fig. 10

Supplementary Figure 10 raw data

Source Data Supp. Fig. 11

Supplementary Figure 11 raw data

Source Data Supp. Fig. 12

Supplementary Figure 12 raw data

Source Data Supp. Fig. 13

Supplementary Figure 13 raw data

Source Data Supp. Fig. 14

Supplementary Figure 14 raw data

Source Data Supp. Fig. 15

Supplementary Figure 15 raw data

Source Data Supp. Fig. 16

Supplementary Figure 16 raw data

Source Data Supp. Fig. 17

Supplementary Figure 17 raw data

Source Data Supp. Fig. 18

Supplementary Figure 18 raw data

Source Data Supp. Fig. 19

Supplementary Figure 19 raw data

Source Data Supp. Fig. 20

Supplementary Figure 20 raw data

Source Data Supp. Fig. 21

Supplementary Figure 21 raw data

Source Data Supp. Fig. 22

Supplementary Figure 22 raw data

Source Data Supp. Fig. 23

Supplementary Figure 23 raw data

Source Data Supp. Fig. 24

Supplementary Figure 24 raw data

Source Data Supp. Fig. 25

Supplementary Figure 25 raw data

Source Data Supp. Fig. 26

Supplementary Figure 26 raw data

Source Data Supp. Fig. 28

Supplementary Figure 28 raw data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudelli, N.M., Lam, D.K., Rees, H.A. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol 38, 892–900 (2020). https://doi.org/10.1038/s41587-020-0491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-020-0491-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing