September 17, 2020 8:00 AM PT

Scalable Manufacturing and Nanovesicle Delivery of CRISPR-Cas9 Ribonucleoproteins Using a cGMP- Compliant Cell Engineering Platform

Peter Gee
MaxCyte Field Application Scientist

ABSTRACT
CRISPR-Cas9 has tremendous potential as a therapeutic tool for treating human diseases. However, prolonged expression of the nuclease and gRNA from viral vectors in an in vivo context may cause unwanted off-target activity and immunogenicity. To overcome these safety issues, a system was recently developed for transient delivery of CRISPR-Cas9 ribonucleoprotein (RNP), recruiting Cas9 protein by chemically-induced dimerization and sgRNA via a viral RNA packaging signal into extracellular nanovesicles.  This system, termed NanoMEDIC (nanomembrane-derived extracellular vesicles for the delivery of macromolecular cargo), demonstrates efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells and myoblasts, and also in vivo in a luciferase reporter mouse model.

View this webinar